ARTIST, a new AI system to speed up material science

ARTIST (Artificial Intelligence for Spectroscopy) is a new approach that uses artificial intelligence to accelerate the spectroscopic analysis and the discovery of new molecules or materials. The new tool was developed by researchers at Aalto University (Finland) and the Technical University of Denmark

Scientists traditionally study molecular reactions to external stimuli with spectroscopy, a widely used method across the natural sciences and industry. Spectroscopy probes the internal properties of materials by observing their response to, for example, light, and has led to the development of countless technologies. Existing experimental and computational spectroscopy approaches can be, however, time consuming and expensive. Time in highly specialised laboratories is expensive and often severely limited, while computations can be tedious and time-intensive.

With ARTIST, the research team offers a paradigm shift to how we determine the spectra—or response to light—of individual molecules.

“Normally, to find the best molecules for devices, we have to combine previous knowledge with some degree of chemical intuition. Checking their individual spectra is then a trial-and-error process that can stretch weeks or months, depending on the number of molecules that might fit the job. Our AI gives you these properties instantly,” says Milica Todorovic, a postdoctoral researcher at Aalto University.

With its speed and accuracy, ARTIST has the potential to speed up the development of flexible electronics, including light-emitting diodes (LEDs) or paper with screen-like abilities. Complementing basic research and characterization in the lab, ARTIST may also hold the key to producing better batteries and catalysts, as well as creating new compounds with carefully selected colours.

The multidisciplinary team trained the AI in just a few weeks with a dataset of more than 132,000 organic molecules. ARTIST can predict with good accuracy just how those molecule, and those similar in nature, will react to a stream of light. The team now hopes to expand its abilities by training ARTIST with even more data to make an even more powerful tool.

“Enormous amounts of spectroscopy information sit in labs around the world. We want to keep training ARTIST with further large datasets so that it can one day learn continuously as more and more data comes in,” explains Patrick Rinke Professor at Aalto University.

The researchers aim to release ARTIST on an open science platform in 2019, and it is currently available for use and further training upon request.

 

 

Source: Aalto University

Read more Innovation Stories